
You Augment Me: Exploring ChatGPT-based Data
Augmentation for Semantic Code Search

Yanlin Wanga,† Lianghong Guob Ensheng Shic,† Wenqing Chena Jiachi Chena

Wanjun Zhonga Menghan Wangd Hui Lie Hongyu Zhangf Ziyu Lyug Zibin Zhenga

aSun Yat-sen University bBeijing University of Posts and Telecommunications
cXi’an Jiaotong University deBay Inc. eXiamen University fChongqing University

gShenzhen Institute of Advanced Technology, Chinese Academy of Sciences
{wangylin36chenwq95, chenjch86, zhongwj25, zhzibin}mail.sysu.edu.cn

glhxystxdy123@gmail.com, s1530129650@stu.xjtu.edu.cn
wangmengh@zju.edu.cn hui@xmu.edu.cn
hyzhang@cqu.edu.cn, zy.lv@siat.ac.cn

Abstract—Code search plays a crucial role in software de-
velopment, enabling developers to retrieve and reuse code us-
ing natural language queries. While the performance of code
search models improves with an increase in high-quality data,
obtaining such data can be challenging and expensive. Recently,
large language models (LLMs) such as ChatGPT have made
remarkable progress in both natural and programming language
understanding and generation, offering user-friendly interaction
via simple prompts. Inspired by these advancements, we propose
a novel approach ChatDANCE, which utilizes high-quality and
diverse augmented data generated by a large language model
and leverages a filtering mechanism to eliminate low-quality
augmentations. Specifically, we first propose a set of ChatGPT
prompting rules that are specifically designed for source code and
queries. Then, we leverage ChatGPT to rewrite code and queries
based on the according prompts and then propose a filtering
mechanism which trains a cross-encoder from the backbone
model UniXcoder to filter out code and query pairs with low
matching scores. Finally, we re-train the backbone model using
the obtained high-quality augmented data. Experimental results
show that ChatDANCE achieves state-of-the-art performance,
improving the best baseline by 13.2% (R@1) and 7% (MRR).
Surprisingly, we find that this augment-filter-retrain strategy
enables the backbone model (UniXcoder) to self-grow. Moreover,
extensive experiments show the effectiveness of each compo-
nent and ChatDANCE has stable performance under different
hyperparameter settings. In addition, we conduct qualitative
and quantitative analyses to investigate why ChatDANCE works
well and find that it learns a more uniform distribution of
representations and effectively aligns the code and query spaces.
We have made the code and data anonymously available at
https://anonymous.4open.science/r/ChatDANCE.

Index Terms—Code Search, Data Augmentation, ChatGPT

I. INTRODUCTION

With the rapid growth of open-source code repositories on
platforms like GitHub [1], code search has become crucial in
software engineering. This task aims to find the code snippet
in a repository that best matches users’ intention, given a
query written in natural language [2]. Code search enables
developers to find and reuse relevant code snippets in software
development and maintenance [3], [4].

†Yanlin Wang and Ensheng Shi are the ding authors.

Early studies [5]–[8] in code search often rely on traditional
information retrieval (IR) techniques, such as matching key-
words based on lexical information of code snippets. With the
popularity of deep learning, neural code search models [9]–
[23] begin to emerge. For example, DeepCS [9] utilizes neural
models to encode queries and codes into a shared vector
space and measures similarity using vector distance. Later, pre-
trained models [24]–[31] emerge and surpass the conventional
neural models in code search. These models better understand
source code and natural language by pre-training on vast
amounts of code and natural language data. Finetuning such
models can achieve excellent results on downstream tasks such
as code search. For example, UniXcoder [27] is a unified
cross-modal pre-trained model for programming languages
that utilize mask attention matrices with prefix adapters to con-
trol the model’s behavior and leverages cross-modal contents
like AST and code comment to enhance code representation.
By finetuning, UniXcoder significantly improves most down-
stream tasks, such as code search and summarization.

Despite the significant advantages of deep learning, two
main bottlenecks prevent neural models from achieving high
performance: 1) the lack of high-quality labeled training data
and 2) the difference in data distribution between the training
and testing datasets [32]. To overcome these challenges, a
straightforward solution is to increase the size and diversity
of the training data by data augmentation. For example,
Huang et al. [33] propose Query-Rewritten Augmentation
(QRA) to generate augmented queries by conducting minor
modifications on queries in the training dataset. Chakraborty
et al. [34] propose a code augmentation method called NatGen
to generate augmented codes using six semantics-preserving
transformations to rewrite codes based on their AST structure.
Later, Jain et al. [31] and Bui et al. [30] use similar code
augmentation methods to pre-train their models. Recently, Shi
et al. [28] propose Soft Data augmentation (SoDa) to pre-train
code search models by masking tokens in data dynamically.
However, current data augmentation methods still have room

https://anonymous.4open.science/r/ChatDANCE

for improvement. First, there is no unified semantics-similar 1

data augmentation method that can enhance both queries and
code simultaneously. The QRA [33] and NatGen [30], [31],
[34] are limited to augmenting only one modality of the data,
such as code or query. Although SoDa [28] can augment
both queries and codes, it is a non-semantics-similar method.
Secondly, the scalability and diversity of the augmented data
generated by the current methods are limited. Specifically,
NatGen requires specific constraints and can not be applicable
to all source code. QRA just adopts simple modifications such
as random word deletion and falls short in terms of producing
diverse augmentations.

Recently, large language models (LLMs) such as ChatGPT
have made remarkable progress in both natural and program-
ming language understanding and generation, offering user-
friendly interaction via simple prompts. Inspired by these
advancements, we propose CHATDANCE, ChatGPT-based
Data AugmeNtation for Code sEarch). Our method can exploit
LLMs such as ChatGPT to generate a large number of high-
quality and diverse data using two core components: ChatGPT-
based data augmentation and model-based data filtering. First,
we use the concept of data augmentation [35] and request the
LLM to rewrite data by making semantic-similar modifications
to the original data, which can effectively preserve most of the
semantics of the generated data. To efficiently interact with
the model and perform data augmentation, we designed two
prompt templates for queries and codes, respectively. These
templates contain essential information for the rewriting task,
such as task definition and critical additional information.
Moreover, our method allows users to inject specific prior
knowledge to guide the LLM in data augmentation. For
instance, in code augmentation, we designed five rewriting
techniques to guide the model to generate new data according
to specific patterns. Second, to further improve the quality of
the generated data, we trained a filtering model on the original
dataset to score and filter the augmented samples. The filtering
model evaluates the quality of the generated data and discards
low-quality data. With our proposed CHATDANCE method,
we can generate a large number of diverse and high-quality
data, which can be used to enhance the generalization ability
and performance of models in downstream tasks such as code
search.

The overall framework of CHATDANCE is presented in
Figure 1. Our approach consists of three stages: (a) data
augmentation via ChatGPT, (b) data filtering, and (c) model
training. In part (a) of Figure 1, we demonstrate how we
achieve data augmentation using ChatGPT. Given a query-
code pair, we first construct query and code augmentation
prompts using different prompt templates for the query and
code, respectively. The prompt template is crucial for effec-

1By design, our goal is to generate semantic-preserving augmentations,
and the majority of them are deemed semantic-preserving upon manual
checking. However, due to the inherent uncertainty and opacity of ChatGPT,
we cannot guarantee that every generated augmentation is strictly semantic-
preserving. Therefore, we use the term “semantic-similar” to describe these
augmentations.

tively interacting with ChatGPT. It includes the definition of
the data rewriting task, important additional information such
as the number of augmented data, and prior knowledge for
completing the task. We then request ChatGPT to rewrite
the original data based on the prompt information, generating
augmented data. Finally, we extract the augmented data from
ChatGPT’s response using regular expressions.

In the data filtering stage, we first train a filtering model to
remove low-quality augmented data to further improve data
quality. Specifically, we train a model based on the cross-
encoder architecture, which can directly score the matching
degree of query-code pairs. We use the scores generated by
the filtering model as the basis for filtering the data. Next, we
use the filtering model to score the matching degree of the
augmented query-code pairs. We filter out query-code pairs
with scores below the filtering threshold and obtain high-
quality data. By removing low-quality data, we can ensure
that the generated data is of high quality and can effectively
enhance the model’s performance.

Finally, after filtering the augmented dataset, we combine
it with the original dataset. Then, we use UniXcoder as our
baseline model with a bi-encoder structure and fine-tune the
model on the final dataset using contrastive loss to improve
the model’s performance.

We evaluate the effectiveness of our approach on the
CoSQA dataset, which contains a large number of real-world
queries. We apply our approach to the state-of-the-art model
UniXcoder in the CoSQA dataset and compare our approach
with semantic-preserving data augmentation methods: QRA
and NatGen. We also conduct ablation studies to investigate
the effectiveness of each component of our approach and ex-
plore the impact of different hyperparameters on our method.
Finally, we conduct qualitative and quantitative analyses to
investigate why our approach works. The results of the experi-
ments demonstrate that: (1) Our approach can significantly im-
prove the model’s performance and outperform the baselines.
(2) Each component of our approach contributes significantly
to improving the model’s performance. (3) Our method ensures
stable performance for the model across various hyperparam-
eter settings, including query filtering threshold ranging θq
from 0.7 to 0.95, code filtering threshold θc ranging from 0.7
to 0.9, learning rate ranging from 1e-5 to 5e-5 and the average
number of augmented samples greater than 5. (4) Compared to
baselines, our method can effectively improve the alignment
and uniformity of the representations learned by the model.

We summarize the contributions of this paper as follows:
• We propose a new data augmentation approach for code

search, which uses ChatGPT to generate a large number
of high-quality data. We also introduce a prompt schema
to improve the interaction with ChatGPT, allowing users
to design their own prompts and provide the necessary
information to complete the task effectively.

• We propose a cross-encoder-based data filtering mecha-
nism that scores code-query pairs and filters low-quality
pairs. This approach can be applied to data collection and
augmentation, resulting in improved data quality.

2

def cumsum(inlist):
 newlist = copy.deepcopy(inlist)
 for i in range(1, len(newlist)):
 newlist[i] = newlist[i] + newlist[i - 1]
 return newlist

def cumsum (inlist):
 newlist = []
 cum_sum = 0
 for i in inlist :
 cum_sum + = i
 newlist.append(cum_sum)
 return newlist

python cumulative sum list python sum list elements cumulatively

Original Query: Augmented Query :

Original Code: Augmented Code:

 Prompt
Templates

ChatGPT

Extract

Original
Query

Original
Code

Augmented
Code

Augmented
Query

 Filtering
Mechanism

Augmented
 Dataset

 Original
 Dataset

Augmented Model

(a) Data Augmentation via ChatGPT

(b) Data Filtering (c) Model Training

Code Prompt

Query Prompt Response

 Response

Extract

Fig. 1: An overview of CHATDANCE.

• We conduct extensive experiments to evaluate the effec-
tiveness of our method on the CoSQA dataset. The ex-
perimental results show that our method can significantly
outperform baselines. Furthermore, our method can ef-
fectively improve the alignment and uniformity of the
learned representations and exhibits stable performance
across a range of hyperparameters.

II. RELATED WORK

A. Code Search

Code search is a crucial aspect of software development and
maintenance [3], [4]. In general, models for code search can
be classified into two categories: information retrieval (IR)-
based models [5]–[8] and deep learning-based models [9]–
[31]. IR-based models often use keyword matching or text
similarity to retrieve relevant code. In recent years, deep
learning-based models have become the mainstream approach
for code search and have achieved promising results. For
instance, Gu et al. [9] proposed the first neural code search
model, CODEnn, which embeds queries and code into a shared
vector space and calculates similarity by vector distance.
Since then, various deep learning-based models have been
developed, including sequence models [10], [12], [15], [18],
[19], [22], convolutional neural networks [14], [17], [21],
and graph neural networks [11], [18]. Recently, pre-trained
models [24]–[31] have emerged as a powerful tool for code
search, outperforming traditional neural models. Pre-trained
models leverage massive amounts of programming language
and natural language data to develop strong code understand-
ing capabilities and achieve excellent performance on various

code-related tasks, including code search. For example, Feng
et al. [25] proposed CodeBERT, a bimodal pre-trained model
that learns representations for both programming language and
natural language. Guo et al. proposed GraphCodeBERT [26],
which utilizes data flow to pre-train the model and improve
the representation of code. UniXcoder [27], a unified cross-
modal pre-trained model for programming languages, uses
mask attention matrices with prefix adapters to control the
model’s behavior and leverages cross-modal contents, such as
abstract syntax trees and code comments, to enhance code
representation. In this paper, we adopt UniXcoder as our
baseline model, as it is the state-of-the-art model on the
CoSQA dataset [33].

B. Large Language Model and In-context Learning

Large language models (LLMs) typically refer to language
models with hundreds of billions or more parameters [36].
Trained on large amounts of text data, LLMs such GPT-
3 [37], PaLM [38], and LLaMA [39] demonstrate impressive
performance on various downstream tasks such as machine
translation, code generation, and more. As the model parame-
ters and size of training data further increase, some emergent
abilities of LLMs have been observed when the model size
exceeds a certain level.

One of large language models’ impressive emergent abilities
is their in-context learning capability. The in-context learning
ability is formally introduced in GPT-3 [37], which enables
the model to generate the expected output for test instances
by completing the input text’s word sequence, given natural
language instructions and/or task demonstrations [36]. Inspired

3

by the concept of in-context learning, we introduce a novel
data augmentation approach that leverages large language
models such as ChatGPT. By providing task instructions to the
model, we can prompt it to rewrite existing data and generate
high-quality augmented data.

C. Data Augmentation in Code Search

Data augmentation is a common method used in code
search to help models achieve better generalization ability
and performance. For instance, Huang et al. [33] propose
Query-Rewritten Augmentation (QRA) to generate augmented
queries by conducting small modifications on queries. The
QRA performs query augmentation by three transformations
such as (1) deleting a word randomly, (2) copying a word
randomly, and (3) switching the position of two words
randomly. In addition, Chakraborty et al. [34] propose a
code augmentation method called NatGen, which includes six
semantics-preserving transformations: (1) Loop Transforma-
tion, (2) DeadCode Injection, (3) Operand Swap, (4) Block
Swap, (5) Variable Renaming, (6) Confusing Code Insertion.
This method chooses appropriate code transformations based
on the AST structure to rewrite the code. Later, Jain et
al. [31] and Bui et al. [30] adopt similar code augmentation
methods for pre-training their models. Recently, Shi et al. [28]
proposed a non-semantics-similar method called Soft Data
Augmentation (SoDa) to pre-train code search models by
dynamically masking tokens in the data. Compared to the
previous approach, ChatGPT Data Augmentation is semantics-
similar and suitable for both queries and codes. Moreover, by
exploiting the powerful generation ability of LLM, our method
can generate data with better diversity and scalability.

III. CHATDANCE FRAMEWORK

This section introduces our straightforward and effective
data augmentation framework via ChatGPT for augmenting
training data on code search. The framework consists of
three subsequent stages, the data augmentation stage, the data
filtering stage, and the model training stage. An overview of
the framework, when applied to augment query-code pairs in
the training dataset, is shown in Figure 1.

In the first stage, we separately augment both query and
code modalities to create augmented samples. For query
augmentation, we request ChatGPT to rewrite an input query
without changing its semantics. Then we pair the rewritten
query with its original code to form a new augmented sample.
For code augmentation, we request ChatGPT to rewrite the
code with the guidance of the five given rewriting techniques,
and then we pair the rewritten code with its original query to
form a new augmented sample.

Next, considering the existence of low-quality augmented
samples that may introduce noise for model training, in the
second stage, we trained a cross-encoder model to compute
matching scores for augmented query-code pairs. The match-
ing scores serve as the basis for filtering out sample pairs that
do not meet a certain threshold.

Finally, we train the model on the augmented dataset to
improve its performance. In the following, we will provide a
detailed explanation of the design of each stage.

A. The Data Augmentation Stage

1) Prompt Schema: Pre-trained on massive and unlabeled
corpora, Large Language Models (LLMs) such as ChatGPT
have demonstrated impressive emergent capabilities when sub-
jected to model scaling. Instead of fine-tuning large models on
specific tasks, complex problems such as machine translation
and code generation can be solved simply by interacting with
the LLMS using appropriate prompts. Therefore, constructing
a good prompt is critical to effectively using a large language
model. Inspired by Natural Instruction [40], we develop a
similar prompt schema to build our data augmentation request
to ChatGPT. Below we present the ingredients of our schema:

• Instruction provides detailed content about the task,
which often includes task input, task output, and approach
to complete the task.

• Emphasis and Caution provides important additional re-
quirements to ensure the effective completion of the task.

• Prior Knowledge provides ChatGPT with prior knowl-
edge to efficiently accomplish the rewriting task.

• Task Input provides the input content for the task.
• Outputs Context provides ChatGPT with the context of

returning task outputs.

2) Prompt Design: Following the prompt schema in Sec-
tion III-A1, We design different prompts based on the char-
acteristics of query and code data, respectively. Next, we
separately elaborate on the content of the query prompt and
code prompt.

Query Augmentation Prompt: The details of the query
augmentation prompt is shown in Table I. (1) Instruction: We
aim to generate augmented queries through data reformulation
to increase the diversity of queries. Therefore, we request
ChatGPT reformulate the query without changing its original
semantics. (2) Emphasis: We firstly specify to ChatGPT the
desired quantity of generated queries. And then, we illustrate
to ChatGPT using the CoSQA dataset example that queries are
brief, ensuring that it generates concise queries. (3) Caution:
To further ensure the brevity of queries, we limit the length
of the augmented query by Equation 1. In the experiment, we
set the α to 1.6.

Lengthorigianl <= Lengthaug <= α ∗ Lengthoriginal (1)

(4) Prior Knowledge: Due to the brevity of queries, the
task is relatively simple to complete without providing prior
knowledge for query reformulation. So we do not provide
prior knowledge here. (5) Task Input & Output Context: We
provide the original query as the task input and provide the text
“Rewritten Queries” as the context for ChatGPT to directly
return results.

4

TABLE I: Structure of query augmentation prompt.

Component Content

Instruction Given a query, your task is to reformulate the query
while ensuring that its semantics remain unchanged. .

Emphasis

You must generate (15) queries. Note that in real-
life scenarios, users’queries are often brief. For
example, the average length of queries in CoSQA
dataset is 6.6. So you must aim to generate concise
queries in this task.

Caution You must limit the length of each rewritten query
to between (query length) and 1.6 *(query length).

Prior Knowledge \
Task Input Original Query: <Query>
Output Context Rewritten Queries:

Code Augmentation Prompt: The details of the code
augmentation prompt are shown in Table II. (1) Instruction:
Similar to the query augmentation prompt, we request Chat-
GPT to rewrite code without changing its functionality in code
enhancement. In addition, we provide a rewriting technique to
guide ChatGPT in rewriting the code. (2) Emphasis: We firstly
specify to ChatGPT the desired quantity of generated codes.
And then, we ask ChatGPT to return codes following a given
template so that the rewritten codes can be automatically ex-
tracted via regular expression. If the given rewriting technique
is not suitable for rewriting, we allow ChatGPT to use different
methods to rewrite the code to avoid returning an empty
response. (3) Prior Knowledge: Compared to query, code is
usually longer and contains more rich information, which
provides more space for code rewriting. Here we propose five
rewriting techniques to guide ChatGPT in efficiently rewriting
code based on different levels of information. The details are
follows.

• Rename the method without changing the function
names it calls internally.

• Rewrite the code with more meaningful variable
names.

• Use different library functions for the code snippet.
• Rewrite the code with the same semantics.
• Simplify the code by removing unnecessary statements

or tokens.
(4) Task Input & Output Context: We provide the original code
as the task input and provide the text “Rewritten Codes” as
the context for ChatGPT to directly return results based on the
given template.

3) Data Augmentation via ChatGPT: We use the ChatGPT
API (gpt-3.5-turbo-0301) with default parameter settings to
perform data augmentation. For query augmentation, we re-
quest ChatGPT to generate 15 augmented queries for each
query based on the prompt template shown in Table I. For code
augmentation, we utilize five different rewriting techniques
mentioned in Section III-A2 to create five prompts based on
the templates shown in Table II. We generated 15 augmented
codes per original code, using each of the five prompts to
generate three new codes. After receiving a response from
ChatGPT, we use regular expressions to extract the generated
data.

TABLE II: Structure of code augmentation prompt.

Component Content

Instruction

Given a method-level code snippet, your job is to
rewrite the code snippet based on a given rewrit-
ing technique, while ensuring that the generated
code performs the same functionality as the origi-
nal code.

Emphasis

You must generate (3) codes. And use “‘ to wrap
each code based on this template : Code (number
such as 1)\n“‘python\n<returned code>\n“‘. If
current rewriting technique is not suitable for the
original code, you can rewrite it using different
technique, while ensuring the generated code has
the same functionality as the original code.

Prior Knowledge Rewriting Technique:<Rewriting Technique>
Task Input Original Code: <Code>
Output Context Rewritten Code:

As an example, Table III shows the five augmented queries
generated by ChatGPT through the rewriting of the original
query. We can see that ChatGPT has a good understanding
of the semantics of the query and can produce high-quality
and diverse queries that preserve the original semantics by
replacing synonyms, changing syntax structures, and using
other techniques. Overall, the generated queries are of high
quality and exhibit good diversity.

TABLE III: Augmented query samples generated by ChatGPT
query augmentation.

Original Query Math function for area of triangle python

Augmented Query 1 Calculate triangle area in Python
Augmented Query 2 Triangle area formula in Python
Augmented Query 3 Triangle area algorithm in Python
Augmented Query 4 Python area calculation for triangle
Augmented Query 5 Formula to calculate triangle area in Python

Figure 2 shows the five augmented code examples generated
by ChatGPT under the guidance of the five proposed code
rewriting techniques. In Figure 2b, it is shown that ChatGPT
can understand the meaning of the code and generate aug-
mented data by rewriting the function name from get tri area
to calculate triangle area. Figure 2c shows that ChatGPT
can understand variable abbreviations and convert them into
semantically precise variable names, such as converting pts to
points. In Figure 2d, ChatGPT implements the function using
a different library function, math.sqrt. In Figure 2e, ChatGPT
generates enhanced code by using a different library function,
cdst, and a different mathematical formula while ensuring that
the semantics remain unchanged. Finally, in Figure 2f, we
see that ChatGPT simplifies the code snippet by removing
statement 2 from the original code.

B. The Data Filtering Stage

1) Bi-encoder & Cross-encoder: In code search, we use
deep learning models to score query-code pairs as the basis for
their matching. There are two common architectures for code
search models: bi-encoder [9]–[12], [15], [16], [18]–[20], [22],
[26]–[28] and cross-encoder [13], [14], [17], [21], [23], [25],

5

1 def get_tri_area(pts):
2 a, b, c = pts[0], pts[1], pts[2]
3 v1 = np.array(b) - np.array(a)
4 v2 = np.array(c) - np.array(a)
5 area_tri = abs(sp.linalg.norm(sp.cross(v1, v2

)) / 2)
6 return area_tri

(a) Original code

1 def calculate_triangle_area (pts):

2 a, b, c = pts[0], pts[1], pts[2]
3 v1 = np.array(b) - np.array(a)
4 v2 = np.array(c) - np.array(a)
5 area_tri = abs(sp.linalg.norm(sp.cross(v1, v2

)) / 2)
6 return area_tri

(b) Rewrite method name

1 def get_tri_area(points):

2 a, b, c = points [0], points [1], points [2]

3 vector1 = np.array(b) - np.array(a)

4 vector2 = np.array(c) - np.array(a)

5 area_triangle = abs(sp.linalg.norm(sp.cross(

vector1,vector2))/2)

6 return area_triangle

(c) Rewrite variables

1 def get_tri_area(pts):
2 a, b, c = pts[0], pts[1], pts[2]
3 v1 = [b[i] - a[i] for i in range(len(a))]
4 v2 = [c[i] - a[i] for i in range(len(a))]

5 area_tri = math.sqrt (pow((v1[0] * v2[1] - v1

[1] * v2[0]), 2)) / 2
6 return area_tri

(d) Use different library functions

1 from scipy.spatial.distance import cdist

2 def get_tri_area(pts):
3 a, b, c = pts[0], pts[1], pts[2]

4 sides = cdist (pts, pts)
5 s= (sides[0][1]+sides[1][2]+sides[2][0]) / 2
6 return (s * (s - sides[0][1]) * (s - sides

[1][2]) * (s - sides[2][0])) ** 0.5

(e) Rewrite the code with the same semantics

1 def get_tri_area(pts):
2 v1 = np.array(pts[1]) - np.array(pts[0])
3 v2 = np.array(pts[2]) - np.array(pts[0])
4 area_tri = abs(sp.linalg.norm(sp.cross(v1, v2

)) / 2)
5 return area_tri

(f) Simplify the code

Fig. 2: Augmented code samples generated by ChatGPT.

encoder

query code

score

encoder

cross-encoder

query code＋

score

(a) Bi-encoder (b) Cross-encoder

Fig. 3: The architectures of bi-encoder and cross-encoder.

[33]. We denote bi-encoder model as fbi and cross-encoder
model as fcross. As shown in Figure 3(a), given a query-
code pair < Q,C >, the bi-encoder model encodes the query
sequence and code sequence into query vector q⃗ and code
vector c⃗, respectively:

q⃗ = fbi(Q) c⃗ = fbi(C) (2)

And then we calculate the cosine similarity between q⃗ and c⃗
as the matching score for the code pair:

Scorebi = sim(q⃗, c⃗), sim(q⃗, c⃗) =
q⃗ · c⃗
∥q⃗∥ ∥c⃗∥

(3)

For the cross-encoder model shown in Figure 3(b), we first
concatenate the query sequence Q and code sequence C into a
single sequence and then input it into the cross-encoder model
to generate the matching score end-to-end:

Scorecross = fcross([Q,C]) (4)

The bi-encoder model typically has a faster retrieval speed
than the cross-encoder model. Assuming there are m query

pairs to be searched against a codebase with n code snippets,
the bi-encoder model requires m+n model inferences, while
the cross-encoder model requires m*n inferences due to the
need to concatenate different queries and codes into input
sequences. Therefore, the bi-encoder model is commonly used
in practical retrieval scenarios. However, the cross-encoder
model has better retrieval accuracy than the bi-encoder model.
After concatenating the query and code sequences, the cross-
encoder model enables token-level interaction between query
and code through attention mechanisms, whereas in the bi-
encoder model, the interaction between query and code is
limited to vector-level. Therefore, the cross-encoder model is
considered to be better at matching queries and codes [41].
In this paper, we employ the cross-encoder model with better
matching capability as the filtering model to filter the aug-
mented data.

2) Filtering Algorithm: After obtaining the augmented data,
we filter the data and generate the augmented training dataset
using the algorithm shown in Algorithm 1. We first train a
neural model to measure the semantic relevance between a
query and a code snippet, and then filter out code and query
pairs with low semantic relevance scores. Specifically, in line
2, we first train a filtering model M based on cross-encoder
architecture on training dataset D. In line 3-21, we generate
an augmented sample for each query-code pair < q, c > in
training dataset D. In line 4, we initialize a list to collect the
filtered code. In line 5-12, we iterate through the augmented
codes and score the original query q and augmented codes
using the filtering model. Then we filter out the augmented
code caug with a score below the threshold, and we synthesize

6

augmented samples by combining q and qaug . Meanwhile, we
add the filtered codes to code list. Similarly, we filter the
queries using the same method in line 13-20. But note that in
line 17-18, we generate an augmented sample by combining
augmented query qaug and csample sampled from code list
randomly to increase the diversity of augmented samples. In
our experiments, we have manually checked the quality of
the augmented data, and the results show that the augmented
code can correctly answer the query. Details can be found in
Appendix of replication package [42].

Algorithm 1 Filtering Algorithm

Input: original training dataset D
Input: query augmentation dictionary dictq
Input: code augmentation dictionary dictc,
Input: filtering threshold for augmented queries θq
Input: filtering threshold for augmented codes θc
Output: augmented training dataset Daug

1: Initialize Daug ← D
2: Train a filtering model M on dataset D
3: for (q, c) in D do
4: code list← [c]
5: for caug in dictc[c] do
6: input sequence = concatenate(q, caug)
7: score = M(input sequence)
8: if score ≥ θc then
9: add (q, caug) to Daug

10: add caug to code list
11: end if
12: end for
13: for qaug in dictq[q] do
14: input sequence = concatenate(qaug, c)
15: score = M(input sequence)
16: if score ≥ θq then
17: csample = random.choice(code list)
18: add (qaug, csample) to Daug

19: end if
20: end for
21: end for
22: return Daug

C. Model Training

After the data filtering stage, we finetune the bi-encoder
model on augmented dataset Daug . Following previous studies
related to code search [24]–[29], we finetune model on training
dataset by this loss function:

L = − 1

bs

bs∑
i=1

[
log

(esim(q⃗i,c⃗i)/τ)∑bs
j=1 e

(sim(q⃗i,c⃗j)/τ)

]
(5)

where bs denotes the batch size during model training. And q⃗i
and c⃗i are vector representations generated from query q and
code c using bi-encoder model. The τ is a hyperparameter.
After finetuning the model on the augmented data, we conduct
evaluations on the test dataset three times with different

random seeds and report the average MRR as the result of
the evaluations.

IV. EXPERIMENTAL DESIGN

A. Evaluated Dataset

We evaluate our approach on a high-quality dataset
CoSQA [33]. It contains 20,604 web queries collected from
the Microsoft Bing search engine and 6,267 Python functions
from GitHub. Each instance in CosQA contains a pair of
a web query and a code snippet, where one code snippet
could be paired with multiple queries. Following the original
settings in Guo et al. [27], the training, validation, and testing
sets contain 19604, 500, and 500 instances, respectively, and
the codebase for code retrieval contains 6,267 code snippets
for evaluation. Table IV provides detailed information about
the dataset. Additionally, due to the maximum input token
length constraint of ChatGPT, we need to ensure that the token
lengths of code and query in the CoSQA dataset do not exceed
4096. We conducted a data statistics on the CoSQA dataset
and found that the maximum token numbers of codes and
queries in the dataset are 1806 and 21, respectively, which do
not exceed the token limit (4096) of ChatGPT. More details
can be found in Appendix of replication package [42].

TABLE IV: Details of CoSQA dataset.

of instances # of queries # of codes

Train 19604 19604 6127
Validation 500 500 6267

Test 500 500 6267

B. Baselines

We compare CHATDANCE with two previous data aug-
mentation methods, namely QRA and NatGen, and a strong
baseline named Unixcoder [27] in code search to evaluate the
effectiveness of CHATDANCE:

1) QRA (Query-Rewritten Augmentation) [33] assumes that
queries with minor modifications share the same seman-
tics as the original query. Based on this assumption,
QRA performs query augmentation by rewriting queries
in three ways: deleting a word randomly, copying a
word randomly, and switching the position of two words
randomly. In our experiments, we use all three ways to
perform Query-Rewritten Augmentation.

2) NatGen (De-Naturalizing Source Code) [34] performs
code augmentation by rewriting code based on six
semantic-preserving transformations: (1) Loop Transfor-
mation, (2) DeadCode Injection, (3) Operand Swap, (4)
Block Swap, (5) Variable Renaming, (6) Confusing Code
Insertion. We use the first five transformations as we find
the last transformation is ineffective for the codes in the
training set. Similar to code augmentation mentioned in
Section III-A3, we use each transformation rule three
times and generate 15 augmented codes in total.

7

C. Experimental Settings

During the data augmentation stage, we use the ChatGPT
API (GPT-3.5-Turbo-0301) [43] provided by OpenAI to gen-
erate data with default parameter settings. In the subsequent
stages, we employed the state-of-the-art model UniXcoder [27]
(Table V) as the backbone model in our experiments. It is
a Transformer-based architecture with 12 layers, 768 dimen-
sional hidden states, and 12 attention heads. During the data
filtering stage, we take cross-encoder-based Unixcoder as the
filtering model and train it using the AdamW optimizer [44]
with a learning rate of 8e-5 and weight decay of 0.01. We
empirically use a filtering score threshold of 0.75 for code and
0.95 for queries during the filtering process. During the model
training stage, we treat UniXcoder as a bi-encoder model and
use AdamW to optimize it with a learning rate of 3e-5 and
weight decay of 0.001. We conduct experiments three times
with different random seeds and report the mean values. All
experiments are conducted on a machine with 216 GB main
memory and Tesla A100 80GB GPU.

TABLE V: Performances of different models on CoSQA.

Model MRR

Encoder-Only
RoBERTa 60.3
CodeBERT 65.7
GraphCodeBERT 68.4

Encoder-Decoder PLBART 65.0
CodeT5-base 67.8

Unified UniXcoder 70.1

D. Evaluation Metrics

Following previous studies [9]–[31], [33], we choose two
commonly used metrics, namely Mean Reciprocal Rank
(MRR) and R@1, to evaluate the performance of the code
search models. MRR is the average of reciprocal ranks of
the ground truth code snippets for the given queries Q. R@1
calculates the proportion of queries for which the correct code
snippets are ranked first in the returned ranked lists. MRR and
R@1 are defined as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(6)

R@1 =
1

|Q|

|Q|∑
i=1

δ(ranki = 1) (7)

where |Q| is the number of queries, ranki is the rank of the
correct code for query i and δ is an indicator function that
returns 1 if the input condition is true and 0 otherwise.

V. EVALUATION

A. RQ1: What Is the Effectiveness of Our Approach?

Overall results. We evaluate the effectiveness of CHAT-
DANCE by comparing it with baselines on the CoSQA [33]
dataset with two common metrics MRR and R@1. The ex-
periment results are shown in Table VI. From Table VI, we

TABLE VI: Performance of different data augmentation ap-
proaches. Standard deviations are shown in parentheses.

Model MRR R@1

UniXcoder 70.2 (±0.35) 56.7 (±0.61)
QRA 71.3 (±0.84) 58.6 (±1.04)
NatGen 72.3 (±1.60) 61.1 (±2.08)

CHATDANCE 75.1 (±0.62) (↑7.0%) 64.2 (±0.87) (↑13.2%)

can see that our model outperforms all baselines. Specifically,
our approach improved the base model (UniXcoder) by 7.0%
in MRR and 13.2% in R@1. Furthermore, our approach has
smaller standard deviations in both MRR and R@1 metrics
compared to the baselines, indicating better stability. Overall,
our approach performs the best among all models.

Case study. Figure 4 presents the top-1 code snippets
returned by QRA, NatGen, and CHATDANCE for the query
“how to remove blank lines from a text file in python”. We can
see that CHATDANCE returns the correct code snippet, which
reads the file content and removes blank lines. In contrast, the
code snippet returned by QRA and NatGen is incorrect, which
can remove blank lines but fails to operate on a file.

Listing (1) The top-1 code returned by NatGen and QRA

def lines(input):
for raw_line in input:

line = raw_line.strip()
if line and not line.startswith(’#’):

yield strip_comments(line)

Listing (2) The top-1 code returned by CHATDANCE

def get_stripped_file_lines(filename):
try:

lines = open(filename).readlines()
except FileNotFoundError:

fatal("Could not open file: {!r}".format
(filename))

return [line.strip() for line in lines]

Fig. 4: The top-1 code returned by QRA, NatGen, and CHAT-
DANCE for the query “how to remove blank lines from a text
file in python”.

Summary: CHATDANCE significantly outperforms
baselines on code search and the case study intuitively
demonstrates the superiority of CHATDANCE.

B. RQ2: How Much Do Different Components Contribute?

As described in Section III, CHATDANCE contains 3 main
components: query augmentation, code augmentation, and data
filtering. We conduct an ablation study by removing each
component at a time. When examining the impact of data
filtering component, we explore three experimental settings:
(1) no filtering on queries, (2) no filtering on code, and (3) no
filtering on both. The results are shown in Table VII.

8

TABLE VII: Ablation study results of CHATDANCE.

Model MRR R@1

CHATDANCE 75.1 (±0.62) 64.2 (±0.87)
w/o query aug 74.6 (±0.66) 63.3 (±1.41)
w/o code aug 72.2 (±0.65) 59.5 (±2.00)
w/o query filtering 73.4 (±0.40) 61.9 (±0.50)
w/o code filtering 73.5 (±0.30) 61.5 (±0.75)
w/o any filtering 72.9 (±2.15) 61.3 (±4.02)

From Table VII, we can see that the performance of CHAT-
DANCE decreases when any individual component is re-
moved. This indicates that each component of CHATDANCE
plays an important role in overall performance improvement.
Furthermore, we observe that data filtering is critical to the
model’s performance and stability. Without data filtering, they
would be significantly affected. The filtering mechanism can
effectively eliminate noise within the data, resulting in high-
quality data that is essential for improving model perfor-
mance.

Summary: The ablation experiments demonstrate the
effectiveness of each component of CHATDANCE.

C. RQ3: What Is the Impact of Different Hyperparameters?

We investigate the impact of hyper-parameters including
query filtering threshold θq , code filtering threshold θc, the
average number of augmentations per sample Naug , and
learning rate lr. We conduct the experiments within ranges
surrounding the default values, and the results are shown in
Figure 5. The results show that the performance preserves
stable as θq varies from 0.7 to 0.95. Similarly, the results show
that the performance remains stable when θc varies from 0.7 to
0.9. However, we observe a sharp decline in performance when
θc changes from 0.9 to 0.95. This is because when θc is set to
0.95, a large number of code augmentation samples are filtered
out, leading to a significant decrease in the total number of
samples and thus a decline in performance. In Figure 5c, we
find that the performance improves significantly as the average
number of augmented samples per original sample increases
from 0 to 5. Beyond this point, the performance improvement
gradually stabilizes. Finally, from Figure 5d, we observe that
CHATDANCE is stable when learning rate varies from 1e-5
to 5e-5.

Summary: Overall, CHATDANCE performs stably
across a range of hyper-parameter values (0.7 ≤ θc ≤ 0.9,
0.7 ≤ θq ≤ 0.95, Naug ≥ 5, 1e−5 ≤ lr ≤ 5e−5).

D. RQ4: Why Does Our Approach Work?

In general, the primary advantage of our approach is
generating a substantial volume of high-quality training data
applicable to both queries and code snippets, which enables
the model to achieve superior performance. By augmenting
queries, we can introduce richer syntactic structures and more
expressive forms, enhancing the model’s robustness and gen-
eralization ability. Additionally, by augmenting codes, we can

0.70 0.75 0.80 0.85 0.90 0.95

50

60

70

80

90
MRR
R@1

(a) Threshold for filtering query θq

0.70 0.75 0.80 0.85 0.90 0.95

50

60

70

80

90

(b) Threshold for filtering code θc

0 2 4 6 8 10 12 14

50

60

70

80

90

(c) Average number of augmented sample Naug

1e-05 1.5e-05 2e-05 2.5e-05 3e-05 3.5e-05 4e-05 4.5e-05 5e-05

50

60

70

80

90

(d) Learning rate lr

Fig. 5: The impact of different hyperparameters.

enable the model to learn more complex syntactic structures
and semantic information in code snippets, improving the
model’s understanding of code snippets. This method not
only amplifies the training data quantity but also elevates its
quality, leading to a more effective and robust model. Next,
we conduct quantitative and qualitative analysis to investigate
why CHATDANCE works well in detail.

1) Quantitative Analysis: We investigate why CHAT-
DANCE works by studying the distribution of data represen-
tations learned by models. We use ℓalign and ℓuniformity [45]
metrics to evaluate the quality of the representations learned
by models, which are widely used in contrastive learning [45]–
[48]. The ℓalign and ℓuniformity metrics are defined as follows
in Equation 8:

ℓalign = E
(x,y)∼Dpair

[∥f(x)− f(y)∥α2], α>0

ℓuniformity = log E
(x,y)∼D

e−t∥f(x)−f(y)∥2
2 , t>0

(8)

where (x, y) ∼ Dpair means that x and y (such as query and
code) are paired, and (x, y) ∼ D means that x and y are inde-
pendently and identically distributed. f(x) and f(y) represent
the representations learned by the model, and ∥f(x)− f(y)∥2
represents the 2-norm distance between the representations.
The hyperparameters α and t are set to 2 in our experiments.
The ℓalignment is defined as the expected distance between
paired representations, which measures the degree of matching
between paired representations. From Equation 8, we know
that the smaller the distance between paired representations,
the closer the alignment loss is to 0. In the extreme case,
if the distance between all paired representations is 0, the
alignment loss is 0. The ℓuniformity measures the uniformity
of the distribution of representations. From Equation 8, we
know that the closer the distribution of representations is
to uniformity, the closer the value of uniformity loss is to
negative infinity. According to [45], [46], better alignment and

9

0.60 0.61 0.62 0.63 0.64
align

3.94

3.93

3.92

3.91

3.90

un
ifo

rm
ity

UniXcoder (70.2)

ChatDANCE(75.1)

QRA(71.3)

NatGen(72.3)

ChatDANCE-Query(72.2)

ChatDANCE-Code(74.6)

Fig. 6: ℓalign-ℓuniformity plot of different models. CHAT-
DANCE-Query and CHATDANCE-Code represent perform-
ing data augmentation on queries or codes, respectively.

uniformity can enable the model to have better performance
and generalization. In our experiments, we use ℓalignment and
ℓuniformity to measure these two properties. The lower the
values of two losses, the better the alignment and uniformity
of the learned representations.

The ℓalign-ℓuniformity plot shown in Figure 6 reveals
several observations. Firstly, our approach reduces both
ℓalignment and ℓuniformity compared to the two baselines.
This implies that our approach can enhance both the align-
ment and uniformity of the learned representations, resulting
in superior performance and generalization. In contrast, the
baselines only reduce the uniformity loss but increase the
alignment loss, indicating a deterioration in the alignment of
the learned representations. Therefore, we believe that better
alignment and uniformity are crucial factors in achieving supe-
rior performance and generalization in our approach. Secondly,
our approach can simultaneously improve the alignment and
uniformity of the learned representations, even when data
augmentation is applied only to either code or query. In
contrast, the baselines fail to achieve this. We attribute this
success to our approach’s ability to generate a large amount
of high-quality and diverse data, thereby improving uniformity
while ensuring the quality and diversity of the generated data.
This allows the model to better comprehend the semantic
meaning of both query and code, ultimately improving the
alignment of the learned representations.

2) Qualitative Analysis: We visualize the distribution of
representations learned by four models shown in Figure 7 to
intuitively explore why our approach works. First, we sample
300 query-code pairs from the test set of CosQA and obtain
their representations in the high-dimensional vector space by
feeding them into the model. Then, we use t-SNE [49] to
perform dimensionality reduction on the representations and
visualize their distribution. The experimental results are shown
in Figure 7. We visualized the distribution of representations
learned by four models: UniXcoder, QRA, NatGen, and CHAT-

40 20 0 20 40

40

20

0

20

40
query
code

(a) UniXcoder

40 20 0 20 40

40

20

0

20

40
query
code

(b) QRA

40 20 0 20 40

40

20

0

20

40
query
code

(c) NatGen

40 20 0 20 40

40

20

0

20

40
query
code

(d) CHATDANCE

Fig. 7: t-SNE visualization of representations of queries and
code snippets. The red and blue dots represent queries and
code, respectively. The green line connecting red and blue dot
shows the distance between query-code pairs.

DANCE, which are shown in Figure 7a, 7b, 7c, and 7d,
respectively. The red dots represent the code, and the blue
dots represent the query. The lines between the red and blue
dots indicate the distance between the code and the query.

From the experimental results, we can observe that: (1) In
Figure 7a, 7b, 7c, and 7d, most of the green lines are very
short, indicating that for most query-code pairs, the model
is able to align their representations in the high-dimensional
vector space to close locations. (2) In Figure 7, compared to
the other three figures, Figure 7d has the fewest long green
lines. This suggests that our approach can enable the model to
have better alignment compared to the other methods, as there
is the fewest number of representations with long distances.
Overall, the visualization results intuitively demonstrate that
our approach can enable the model to learn better representa-
tions compared to the baselines by improving the alignment
and uniformity of the learned representations.

Summary: CHATDANCE learns a more uniform dis-
tribution of representations and effectively aligns the
learned representations of paired code snippets and
queries.

VI. DISCUSSION

A. Discussion on Using LLMs

Generally, LLMs such as ChatGPT [50] are commonly used
for generation tasks. However, when used for code search, a
smaller code search model is more efficient. In our pre-study,
we find that ChatGPT takes an average of 5 seconds to gener-
ate a single code snippet, while a code search model retrieves
code with an average time of 0.023 seconds. As a result,
code search models demonstrate higher efficiency compared

10

to directly using LLMs. Additionally, when the codebase is
evolving, training ChatGPT to update its knowledge is costly,
whereas training dedicated code search models on the updated
codebase is relatively inexpensive. In general, using smaller
models for code search is more efficient and cost-effective
compared to using LLMs directly.

B. Metric Choice

In our experiments, we choose MRR and R@1 as the
evaluation metrics instead of R@5 and R@10, even though
MRR and R@k (where k=1, 5, 10) are commonly used metrics
in code search. This is because our experiments employed a
powerful baseline, UniXcoder, which achieved MRR scores
greater than 0.6. This suggests that for the majority of queries,
the correct code is ranked within the top-3 results. Conse-
quently, R@5 and R@10 metrics are not very informative
in this case to reflect performance improvements. Therefore,
we focus on using MRR and R@1 as the primary evaluation
metrics. However, for completeness and comparison purposes,
we also provide the evaluation results under R@5 and R@10
in Appendix of replication package [42].

C. Threats To Validity

We identify the following threats to our approach:
LLM Choice. In our experiments, we only use the GPT-3.5-

Turbo-0301 model [43] to perform data augmentation. This
is because OpenAI only made this API available during the
experiment. Additionally, other large open-source models such
as Llama [39] were not open-sourced at the time, so we did
not explore the effectiveness of our method using more LLMs.
In the future, we will combine our method with more LLMs
to comprehensively explore its effectiveness.

Dataset Choice. As shown in Section IV-A, we use the
CoSQA [33] dataset instead of other datasets such as Code-
SearchNet [51] in our experiments. This is because CoSQA is
collected from real-world queries and with manually checked
data quality, which is advantageous for us to explore the effec-
tiveness of our method on both query and code enhancement.
Additionally, CodeSearchNet has a much larger dataset size
compared to CoSQA, and considering that our method is time-
consuming, performing data augmentation on CodeSearchNet
would require a significant amount of time. In the future, we
will explore the effectiveness of our method on more datasets.

VII. CONCLUSION

In this paper, we explore the effectiveness of ChatGPT-
based data augmentation in the code search task and demon-
strate its effectiveness through extensive experiments. We
propose a novel and efficient data augmentation method called
CHATDANCE, which generates a large amount of high-
quality data by rewriting both code and queries using ChatGPT
with carefully designed guidance. Additionally, we introduced
a filtering mechanism that removes low-quality data from
the augmented data, further enhancing the quality of the
augmented data. Our experimental results demonstrate that
our method can effectively improve the performance of code

search models and significantly outperform the baselines. We
believe that our augmentation method could be adapted to
other code intelligence tasks such as code summarization
and different programming languages. Furthermore, our explo-
ration on prompt engineering for code search may inspire re-
searchers to effectively leverage LLMs in solving various soft-
ware engineering tasks. Replication package is anonymously
available at https://anonymous.4open.science/r/ChatDANCE.

ACKNOWLEDGEMENT

The work described in this paper was supported by the
National Natural Science Foundation of China (No.62002352)
and the National Natural Science Foundation of China
(No.62032025).

REFERENCES

[1] “Github,” https://github.com/.
[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey

of machine learning for big code and naturalness,” ACM Computing
Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[3] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination
of software engineering work practices,” in CASCON First Decade High
Impact Papers, 2010, pp. 174–188.

[4] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Transactions on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[5] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings of
the 33rd International Conference on Software Engineering, 2011, pp.
111–120.

[6] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion
via wordnet for effective code search,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 2015, pp. 545–549.

[7] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao, “Codehow:
Effective code search based on api understanding and extended boolean
model (e),” in 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2015, pp. 260–270.

[8] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi,
“Sourcerer: mining and searching internet-scale software repositories,”
Data Mining and Knowledge Discovery, vol. 18, pp. 300–336, 2009.

[9] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proceedings of
the 40th International Conference on Software Engineering, 2018, pp.
933–944.

[10] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When deep
learning met code search,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019, pp. 964–974.

[11] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, and
S. Ji, “Deep graph matching and searching for semantic code retrieval,”
ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15,
no. 5, pp. 1–21, 2021.

[12] J. Shuai, L. Xu, C. Liu, M. Yan, X. Xia, and Y. Lei, “Improving code
search with co-attentive representation learning,” in Proceedings of the
28th International Conference on Program Comprehension, 2020, pp.
196–207.

[13] L. Du, X. Shi, Y. Wang, E. Shi, S. Han, and D. Zhang, “Is a single
model enough? mucos: A multi-model ensemble learning approach for
semantic code search,” in Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, 2021, pp. 2994–
2998.

[14] W. Li, H. Qin, S. Yan, B. Shen, and Y. Chen, “Learning code-query
interaction for enhancing code searches,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE,
2020, pp. 115–126.

[15] W. Ye, R. Xie, J. Zhang, T. Hu, X. Wang, and S. Zhang, “Leveraging
code generation to improve code retrieval and summarization via dual
learning,” in Proceedings of The Web Conference 2020, 2020, pp. 2309–
2319.

11

https://anonymous.4open.science/r/ChatDANCE
https://github.com/

[16] Y. Ma, Y. Yu, S. Li, Z. Jia, J. Ma, R. Xu, W. Dong, and X. Liao, “Mulcs:
Towards a unified deep representation for multilingual code search.”

[17] Q. Zhu, Z. Sun, X. Liang, Y. Xiong, and L. Zhang, “Ocor: an
overlapping-aware code retriever,” in Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, 2020, pp.
883–894.

[18] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, “Multi-
modal attention network learning for semantic source code retrieval,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 13–25.

[19] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” in Annual Meeting of the
Association for Computational Linguistics, 2020.

[20] J. Gu, Z. Chen, and M. Monperrus, “Multimodal representation for
neural code search,” in 2021 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2021, pp. 483–494.

[21] C. Ling, Z. Lin, Y. Zou, and B. Xie, “Adaptive deep code search,” in
Proceedings of the 28th International Conference on Program Compre-
hension, 2020, pp. 48–59.

[22] W. Sun, C. Fang, Y. Chen, G. Tao, T. Han, and Q. Zhang, “Code search
based on context-aware code translation,” in Proceedings of the 44th
International Conference on Software Engineering, 2022, pp. 388–400.

[23] Y. Shi, Y. Yin, Z. Wang, D. Lo, T. Zhang, X. Xia, Y. Zhao, and
B. Xu, “How to better utilize code graphs in semantic code search?”
in Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2022, pp. 722–733.

[24] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding
and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, 2021, pp. 8696–8708.

[25] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” in Findings of the Association for Computational
Linguistics: EMNLP 2020, 2020, pp. 1536–1547.

[26] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, L. Shujie, L. Zhou,
N. Duan, A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training
code representations with data flow,” in International Conference on
Learning Representations.

[27] D. Guo, S. Lu, N. Duan, Y. Wang, M. Zhou, and J. Yin, “Unixcoder:
Unified cross-modal pre-training for code representation,” in Proceed-
ings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2022, pp. 7212–7225.

[28] E. Shi, Y. Wang, W. Gu, L. Du, H. Zhang, S. Han, D. Zhang, and H. Sun,
“Cocosoda: Effective contrastive learning for code search,” 2023.

[29] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified pre-
training for program understanding and generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2021,
pp. 2655–2668.

[30] N. D. Bui, Y. Yu, and L. Jiang, “Self-supervised contrastive learning for
code retrieval and summarization via semantic-preserving transforma-
tions,” in Proceedings of the 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2021, pp. 511–
521.

[31] P. Jain and A. Jain, “Contrastive code representation learning,” in
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, 2021.

[32] Z. Dong, Q. Hu, Y. Guo, Z. Zhang, M. Cordy, M. Papadakis, Y. L. Traon,
and J. Zhao, “Boosting source code learning with data augmentation:
An empirical study,” arXiv preprint arXiv:2303.06808, 2023.

[33] J. Huang, D. Tang, L. Shou, M. Gong, K. Xu, D. Jiang, M. Zhou,
and N. Duan, “Cosqa: 20,000+ web queries for code search and
question answering,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers), 2021, pp. 5690–5700.

[34] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray, “Natgen:
generative pre-training by “naturalizing” source code,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 18–
30.

[35] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal
of Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50,
2001.

[36] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong et al., “A survey of large language models,” arXiv
preprint arXiv:2303.18223, 2023.

[37] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[38] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,
P. Barham, H. W. Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling
language modeling with pathways,” arXiv preprint arXiv:2204.02311,
2022.

[39] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[40] S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi, “Cross-task general-
ization via natural language crowdsourcing instructions,” in Proceedings
of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2022, pp. 3470–3487.

[41] F. Hu, Y. Wang, L. Du, X. Li, H. Zhang, S. Han, and D. Zhang,
“Revisiting code search in a two-stage paradigm,” in Proceedings of
the Sixteenth ACM International Conference on Web Search and Data
Mining, 2023, pp. 994–1002.

[42] Anonym, “Anonymous replication package,” https://anonymous.4open.
science/r/ChatDANCE/README.md, 2023.

[43] “Openai platform - chat api documentation,” https://platform.openai.
com/docs/guides/chat, 2023.

[44] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[45] T. Wang and P. Isola, “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in International
Conference on Machine Learning. PMLR, 2020, pp. 9929–9939.

[46] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning
of sentence embeddings,” in 2021 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2021. Association for
Computational Linguistics (ACL), 2021, pp. 6894–6910.

[47] Y. Meng, C. Xiong, P. Bajaj, S. Tiwary, P. Bennett, J. Han, and
X. Song, “Coco-lm: Correcting and contrasting text sequences for
language model pretraining,” in 35th Conference on Neural Information
Processing Systems, NeurIPS 2021. Neural information processing
systems foundation, 2021, pp. 23 102–23 114.

[48] F. Wang and H. Liu, “Understanding the behaviour of contrastive loss,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 2495–2504.

[49] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[50] Chatgpt. OpenAI. [Online]. Available: https://chat.openai.com/
[51] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,

“Codesearchnet challenge: Evaluating the state of semantic code search,”
arXiv preprint arXiv:1909.09436, 2019.

12

https://anonymous.4open.science/r/ChatDANCE/README.md
https://anonymous.4open.science/r/ChatDANCE/README.md
https://platform.openai.com/docs/guides/chat
https://platform.openai.com/docs/guides/chat
https://chat.openai.com/

	Introduction
	Related Work
	Code Search
	Large Language Model and In-context Learning
	Data Augmentation in Code Search

	ChatDANCE Framework
	The Data Augmentation Stage
	Prompt Schema
	Prompt Design
	Data Augmentation via ChatGPT

	The Data Filtering Stage
	Bi-encoder & Cross-encoder
	Filtering Algorithm

	Model Training

	Experimental Design
	Evaluated Dataset
	Baselines
	Experimental Settings
	Evaluation Metrics

	Evaluation
	RQ1: What Is the Effectiveness of Our Approach?
	RQ2: How Much Do Different Components Contribute?
	RQ3: What Is the Impact of Different Hyperparameters?
	RQ4: Why Does Our Approach Work?
	Quantitative Analysis
	Qualitative Analysis

	Discussion
	Discussion on Using LLMs
	Metric Choice
	Threats To Validity

	Conclusion
	References

